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Abstract. A stochastic model for a continuous photon counting measurement is proposed. 
An equation for the generating functional of the statistics of counts is found. A stochastic 
linear equation for the unnormalised posterior state vector o f  atoms, continuously collapsing 
without mixing, is derived by using quantum stochastic calculus methods. 

The time evolution of a quantum system under continuous observation can be obtained 
in the framework of the quantum theory of non-demolition measurements [l-41. In 
this letter we derive the corresponding posterior von Neumann and Schrodinger 
equations on the basis of the stochastic description of continuous non-demolition 
counting observation. We use the quantum stochastic counting method recently 
developed by Hudson and Parthasarathy for point processes in [ 5 ]  and the notion of 
output quantum fields introduced by Gardiner and Collet [6 ] .  The elegant Barchielli 
model [ 3 , 7 ]  of continuous measurement of the output counting process of photons 
emitted by a system of atoms is generalised to the case of a continuous and a mixed 
spectrum. Under the assumption of completeness of the non-demolition observation 
of the atoms, we derive the new stochastic dissipation equation, announced in [8], by 
which one should replace the ordinary Schrodinger equation in the case of continuous 
measurement, if the observed information is taken into account. As is shown in [9], 
equations of this type describe the continuous non-mixing collapse of the wavepacket 
q ( t )  whose propagation depends on measurement data up to  the present instant of 
time t > 0. In the case of photon emission, this collapse can be described as a sequence 
of electron transitions to lower atomic energy levels at random instants of photon counts. 

Let us consider a quantum system ‘atom+Bose (photon) field’ whose unitary 
evolution U (  t )  satisfies the Schrodinger quantum stochastic equation [ 5 , 6 ]  

d U + K U d t =  ( R ,  dB’(dx)-RI, dB(dx) )U  U ( 0 )  = i. (1) J 
Here K = I  R;R,h(dx)/2+iE/h, E is the energy operator of the atoms, {R,, x E R3} 
is a family of some atom operators which define, on the right-hand side of ( l ) ,  the 
‘energy of stochastic interaction’ with the Bose field. It is described by the annihilation 
B(  t )  and the creation Bt( t )  time-dependent operator-valued measures on Bore1 sets 
A c  R3 of wavevectors x = ( X I ) ,  i = 1,2,3;  the integral is taken over x E R3 with the 
forward (Ito) increments 

dBt( r, A)  = B+( t +dt, A) - Bt( t, A)  = dB( t, A)t .  

t Permanent address: MIEM, B Vusovski 3/12, Moscow 109028 USSR. 
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We suppose that B( t )  and B+( t )  represent the commutator relations in Fock space 

(2) 

with respect to a given Bore1 measure A (dx)  5 0 on R3. The measure A may be atomic: 
A(dx) = x k  A k S ( % k ,  dx) ,  6(x, A) is 1, if x E A, and 0 if x E A, in the case of a discrete 
wave spectrum of the quantum field, as well as dispersed, say A (dx)  = dx := dx '  dx2  dx3  
in the case of a continuous spectrum. 

Let us denote by N (  t )  the time-dependent operator-valued counting measure 
A- N (  t, A )  on R3, uniquely defined in the Fock space of the irreducible representation 
of ( 2 )  by the commutators 

[B(t',A'), B'(t,A)]= t A t ' A ( A n A ' )  t A t ' =  min{t, t '}  

[B(t',A'), N(t ,A)]=B(t 'A t ,A'nA) (3) 

(the self-adjoint operators N (  t, A) = N (  t, A)', t > 0, A c R' are supposed to be pairwise 
commutative, as well as B ( t ,  A)). Formally, one can consider N ( t ,  A )  as the integrals 
5; I, b'(x)b(x) dx  (taken over x E (0, t ]  x A )  of the Wick (normal) ordered product of 
generalised canonical Bose fields b(x),  bt(x) on R + x R 3  which define B(t ,A)= 
5AJ3 b ( x )  dx, B'(t ,  A )  =J;IA b ' (x )  dx with respect to the measure dx =d tA(dx)  on 
(0, t ]  x A. The output [ 6 ]  counting process fi( t )  = U'( r ) N (  t )  U (  t )  is defined by the 
operator-valued measure (cf [3], equation (4.4)): 

f i ( r , dx )=A(dx)  ~ o ' d s d ~ , x d 7 , x +  lo'[d;,+ d B ( s , d x ) + d , ,  dB ' ( s ,dx) ]+N(t ,dx)  (4) 

where d,,, = U'!r)R,U(t) .  One can find it as the quantuy stochastic iptegral 
fi( t ,  d x )  = 5; (dN(dx)  of the forward increments d f i (  t ,  A) = N (  t + dt, A )  - N (  t, A), 
using the quantum Ito formula [5] 

d(XY) = d X Y + X  d Y + d X  d Y ( 5 )  

for the product Ut  NU and the Hudson-Parthasarathy multiplication table 

dB(A') dBt(A) =drA(A'nA) 

dB(A') dN(A) = dB(A'n A )  

dN(A') dN(A) = d N ( 4 ' n A )  

dN(A') dB'(A) = dBt(A'nA). 
( 6 )  

Note that the output process fi( t )  is observable due to the commutativity [ fi( t ' ,  A'), 
A( t ,  A)]  = 0 for all t ,  t' and A, A', which means that it can be represented by a classical 
stochastic measure on R' with values in (0, 1,2,. . .}. Moreover, by the property 
mentioned in [ 3 , 7 ]  

U ( t ) f i ( r )  = N ( r ) U ( t )  r s  t 

the output process fi satisfies the non-demolition principle [4] 

[ f i ( r ) ,  R(t)]  = ~ + ( t ) [ ~ ( r ) ,  X I U ( ~ )  = O  r s t  ( 7 )  
Yith respect to any observable X of the system of atoms in the Heisenberg picture 
X( t )  = U+( ?)xu( t ) .  

Let us suppose that the observed process is the quantum momentum 

?( t )  = h x N (  t, d x )  O ~ A C R ~  I, 
of the output Bose field received in a given wave region A with A ( A )  =5,  A(dx) (finite 
wave aperture of the receiver antenna). This means that the observer counts the photons 
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with wave momenta x E A by measuring jumps of the total momentum in A up to the 
instant t .  It has the value 

for a sequence xJ = ( r , ,  x , ) ,  j = 1,2,. . . , definining the spectral value of the output 
counting measure (4) as the number Z,.,,EA X ( t  - t , ) .  

Let us find the equation for the generating map r(f, t )  of the instrument [lo] 
describing the quantum receiver as a map X + T [ X ]  of the algebra of atom operators 
X into itself defined by 

(+Irtxi+) = (jW t)) (8) 

where g ( t ) =  u ( t ) X U ( t ) ,  ?(f, r ) =  U ' ( t ) Y ( f ,  t ) U ( t ) ,  

f ( x )  is a complex measurable function on x = ( t ,  x )  with I f ( x ) l  E (0 , l )  and the mean 
value ( ) is taken with respect to the initial product state of the wavefunction +b of the 
atom and the vacuum state vector of the input Bose field. 

We find the equation by a modification of the characteristic map mztcod described 
for the case of discrete spectrum A in [3 ,7] .  Taking into account that X Y  = U t X Y U  = 
?g due to the non-demolition property (6) and Ito's differential rule 

d Y ( t , f )  = [,EA ( f ( t ,  x )  - 1) Y ( t , f )  dN(t ,  d x )  (10) 

for the e?ponential(9), one can obtain the quantum stochastic equation for the product 
6 ( t ) = X ( t ) ? ( t )  by ( 5 ) ,  ( 6 )  from ( l ) ,  (10) 

d6=dUtGU+U'dGU+UtGdU+dUtdGU 
+ d UtGd U + Ut d G  d U + d U' d G  d U  

=! ( f ( x ) f f ' , 6 - G f f : )  d l ? ( d x ) + l  ( f ( x ) 6 d x - f f , 6 )  dB'(dx) 

+ (f( x )  - 1 ) 6  d N ( d x )  + dt  f( x ) f f : & f f , A  (dx )  - I? '6 - GK 

(11) 
Here the integrals are taken over all x E R3 withf(x) = 1 for x E A. Hence, the right-hand 
side of the equation for the mean value (8) contains only the mean of the last differential 
term of (1 1): 

A A )  

A A  A A 

d( 6) = d t (I f( X )  R ;  GR,A (dx )  - I? 6 - GK 

due to the zero mean values of the other differentials with respect to the vacuum input 
field state. 

In the Schrodinger picture G = U6U' = XU, this gives the ordinary differential 
equation for the generating map r defined in (8) 

(12) I d - r[ X ]  + r[ K ' X  + X K  ] = 
d t  f( x )T[ RLXR,]A (dx ). 
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The equation (12)  in the case of the atomic measure A was obtained by Barchielli 
[3] in terms of the characteristic map r(t, eik) corresponding tof(x)  = eik(x) ,  x = ( t ,  x ) .  
The solution of this equation is given [lo] by the von Neumann-Dyson series 

(14) - i H r l h  V ( X ~ ,  . . . , xn, t )  = e  Rx, t ( tn) .  . . RXl(t ,)  

of R,(t)=eIH"' R, e-'H"', iH/h = K - A ( A ) / 2  ( H t =  H only if R:R, = I for all x 
with A(dx) # 0). 

Let us denote by w = ( x l , .  . . ,x,) the chain x, =(t, ,  x , ) ,  t ,  <. . .< tn, dw = 
I-I;=] dx,, dx, = dt, A(dx,), and by a;, the sets of all finite chains ( 0 1  := n E (0, 1, .  . .}, 
f, E (0, t ]  with x, E A and x, f A respectively. Taking into account the fact that any 
chain w is the union wo U w 1  of the chains wo E 0, and w 1  E s1, and dw = do, d w ,  , once 
can rewrite the series (13) in the form of the expectation 

of the product off(w) =llI,,,f(x) and 

@(wIt)[X] = V*(w u w,lr)XV(w u w o l f )  dwo W E 0 6  (16)  

with respect to the Poisson probability measure on 0; 
n 

dv(wlt) = dw dw = dt, A(dx,). 
J = 1  

Hence the observed quantum momentum process @ up to the instant t can be described 
by the probability density on of photon counts w = (x , ,  . . . , x,) 

with respect to dw. It has a modified Poisson form 

p ( w l t )  = e-'"'"'f(wlt) f ( w I t )  = 4 ( w l t ) [ l l  (18 )  
where 4 ( w l t ) [ X l  = (+ l@(wl t ) [X]+)  is the posterior state of the atoms normalised by 
the probability density 

with respect to the Poisson measure (17). Moreover, the state $ ( t )  defining the 
normalised posterior state 

p^(wIt)[Xl= & J l ~ ) [ X l / f ( w l t )  
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almost everywhere ( f o r o  : f ( w l t )  # 0 ) ,  satisfies (as a stochastic function) 4( t )  : o E 

4 ( w l t )  the following stochastic equation: 

RIXR,A(dx)) d t  

Let us prove this equation, assuming that the receiver counts the entire output field, 
i.e. A(dx)=O, if % E A .  

In this case, since doo=O for yo# I$, the instrument is pure (P(wlt)[X] = 
V'(wlt)XV(wlt),i.e. theposeriorstate I $ ( t )  isdefinedbythestochasticvector $ ( t ) :  w -  
cp(wlt) ,  if th: initial state of the atoms is described by the vector $. The stochastic 
propagator V(t):(w,$)-cp(olt) defined for the chain w = ( x , ,  . . . ,  x , , ) ~ f l i  in (14) 
can be written as the Wick chronologically ordered exponential function 

where :txp( ) : ( w )  denotes the chronological product Ex,, R,( t ) ,  x = ( t ,  x), defining 
the Wick ordering 

:-lo' [ (R,(r)-- 1) d&(r, dx)):(w) = Rx,p( fn) .  . . R,,(t,) =n R,(f) 
X € W  

(the integral is taken over all x E R3 due to the result that N (  t ,  d x )  = 0 if x f A ) .  Hence 
the posterior propagator V (  t )  satisfies the linear stochastic differential exponential 
equation 

d ? + i H? dt /  h := (R, - I )  3 d &( dx)  := L, 3 d&(dx ) (22) 5, 5, 
obtained by differentiation of (21), where : L, d N :  = L, d N  for L, = R, - Z, because 
of the fact that V( t )  and L, are independent of d N (  t )  = N (  t +dt )  - N (  t )  = : d N (  t ) : .  
It gives the correspondence of the Wick chronological order in (21) to the Ito chrono- 
logical multiplicative integral 

?(t)=e-"*'* 2 [ jA. .  . [ [ L.x ,2(h , ) .  . . Lxl(rl)  fi dk(r , ,dx,)  
n = O  A ] = I  

O < ' , C  < ' , , G f  

where L,(t) = ei'H'h Lxe-'iH'h = R,(t) - I ,  defining the solution of (22). So the posterior 
state vector $( t )  = ?( t ) +  satisfies the stochastic wave equation 

d$+iH$ d t / h  = ( R ,  -Z)$ d&(dx).  i, 
The linear equation (23) which corresponds, by the Ito formula ( 5 ) ,  to the case 

d$[X] -L $ [ X H - H t X ]  d t  = &R:XR, -XI d N ( d x )  
f i  I, 

of (20) for $[XI = I$+X$, can be, found also firom the ?onlinear Schrodinger equation 
for the normalised state vector + ( r )  = $ ( t ) / ( f ( t ) ) ' / ' ,  f ( t )  = $( t ) ' I $ ( t ) ,  obtained in [8] 
with the help of the quantum filtering method. 
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Equation (23) explains relaxation without mixing of continuously observed atoms, 
emitting counting photons if R ,  are taken as annihilation operators A, in the energy 
representation E = Zk eklk)(kl  of the atoms. 
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